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Abstract

Olfactory neuroblastoma (ONB) is a rare, locally aggressive, malignant neoplasm originat-

ing in the olfactory epithelium in the nasal vault. The recurrence rate of ONB remains high

and there are no specific treatment guidelines for recurrent/metastatic ONBs. This study ret-

rospectively evaluated 23 ONB samples profiled at Caris Life Sciences (Phoenix, Arizona)

using DNA sequencing (Sanger/NGS [Illumina], n = 15) and gene fusions (Archer Fusion-

Plex, n = 6), whole genome RNA microarray (HumanHT-12 v4 beadChip, Illumina, n = 4),

gene copy number assays (chromogenic and fluorescent in situ hybridization), and immuno-

histochemistry. Mutations were detected in 63% ONBs including TP53, CTNNB1, EGFR,

APC, cKIT, cMET, PDGFRA, CDH1, FH, and SMAD4 genes. Twenty-one genes were over-

expressed and 19 genes under-expressed by microarray assay. Some of the upregulated

genes included CD24, SCG2, and IGFBP-2. None of the cases harbored copy number vari-

ations of EGFR, HER2 and cMET genes, and no gene fusions were identified. Multiple pro-

tein biomarkers of potential response or resistance to classic chemotherapy drugs were

identified, such as low ERCC1 [cisplatin sensitivity in 10/12], high TOPO1 [irinotecan sensi-

tivity in 12/19], high TUBB3 [vincristine resistance in 13/14], and high MRP1 [multidrug resis-

tance in 6/6 cases]. None of the cases (0/10) were positive for PD-L1 in tumor cells.

Overexpression of pNTRK was observed in 67% (4/6) of the cases without underlying

genetic alterations. Molecular alterations detected in our study (e.g., Wnt and cKIT/

PDGFRA pathways) are potentially treatable using novel therapeutic approaches. Identified

protein biomarkers of response or resistance to classic chemotherapy could be useful in

optimizing existing chemotherapy treatment(s) in ONBs.
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Introduction

Olfactory neuroblastoma (ONB), also called esthesioneuroblastoma, is a rare, locally aggres-

sive, malignant neoplasm originating in the specialized sensory neuroepithelial olfactory cells

found in the upper part of the nasal cavity [1]. Multiple modalities are currently in use to treat

ONB, including surgical resection, radiotherapy, and chemotherapy. Numerous studies con-

firmed that a combination of surgery and radiotherapy is the treatment of choice for the

majority of primary-site ONBs [2–6]. Advanced and metastatic ONBs are usually treated with

classic chemotherapy, including etoposide, ifosfamide, cisplatin, cyclophosphamide, vincris-

tine, doxorubicin, and nitrogen mustard [3,7]. However, due to the unpredictable biological

behavior of the tumor and a lack of consensus on traditional treatment modalities [2,3], the

recurrence rate of ONB remains high and effective treatment guidelines for high-grade ONBs

are yet to be developed.

In recent years, with the advancement of molecular diagnostic methods, the focus has been

on developing individualized targeted therapies for treating different types of cancer [8]. Cyto-

genetic studies on ONB revealed diverse and complex genomic imbalances in entire chromo-

somes and chromosome segments [9–11]. Several studies have reported copy number changes

in ONB including gains at 7q11 and 20q and deletions at 2q, 5q, 6p, 6q, and 18q [10], as well as

novel chromosome aberrations that have not been previously described. In addition, some

chromosome regions could be implicated in the tumor progression and metastases formation

[1,12]. These results not only indicate complex molecular processes underlying ONB, but also

point to the need for a more detailed molecular characterization of ONBs at different stages of

tumor progression.

Currently only a few studies have investigated genomic landscape of ONBs, using different

sequencing techniques [13–17]. Furthermore, in three of these studies the potential of targeted

therapy with specific drugs was explored. Weiss et al. [13] performed whole genome sequenc-

ing (WGS) on paired normal and tumor DNA from a patient with metastatic ONB. They

detected mutations specific only to the metastatic ONB sample (i.e., in KDR, MYC, SIN3B, and

NLRC4 genes) as well as mutations present in both, the metastatic and original surgical resec-

tion specimens (i.e., in TP53, TAOK2, and MAP4K2 genes) [1]. Analyzing cancer genomes

from seven rare types of metastatic adolescent and young adult cancers (including ONB) using

whole exome sequencing [WES], whole-transcriptome sequencing, or OncoScan™, Cha et al.

identified TP53 missense mutation in a metastatic ONB sample, as well as a loss-of-function in

CDKN2C gene [14]. Based on these results, they proposed CDK4/6 inhibitors, palbociclib and

LY2835219, as potential treatment strategies [16,18]. Similarly, a recent comprehensive geno-

mic study of Gay et al revealed alterations of TP53, PIK3CA, NF1, CDKN2A, and CDKN2C in

ONBs [16]. The study of Wang et al. was first to report a case of recurrent ONB treated with a

targeted therapy regimen determined after WES. Mutations in EGFR, FGFR2, KDR, and RET
genes were detected, therefore the authors utilized a combination of cetuximab and sunitinib

[15].

Considering the lack of standardized treatment guidelines, the potential advantages of tar-

geted therapy approaches [8] and the paucity of data exploring the molecular pathogenesis of

ONB, we explored potentially targetable biomarkers/pathways in a cohort of recurrent or met-

astatic ONBs, using multiplatform molecular profiling approach. We identified multiple pro-

tein biomarkers of response or resistance to classic chemotherapy and targeted therapy that

could be useful in optimizing the cytotoxic chemotherapy and further improving personalized

treatment of ONB.
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Materials and methods

Patients and samples

This retrospective study included 23 formalin-fixed paraffin-embedded (FFPE) samples of the

patients with recurrent or metastatic ONB (see S1 Excel File) profiled at the CLIA-certified lab-

oratory, Caris Life Sciences (Phoenix, Arizona) in the period 2012–2017. Histologic diagnosis

and review of results of immunohistochemical tests performed at the referring institutions to

support the diagnosis of ONB were confirmed by a board certified pathologist (Z.G.) and

appropriate slides were used for molecular profiling. Microdissection of tumor samples was

performed when appropriate to enrich the tumor cell population.

Caris Life Sciences de-identified, remnant samples provided by participating investigators.

Tumor profiling was performed and results were associated to a Subject ID. Because remnant

tissue from previous samplings with no associated identifiers were utilized, this research was

compliant with 45 CFR 46.101(b). Therefore, the project was deemed exempt from IRB over-

sight and consent requirements were waived.

Immunohistochemistry (IHC)

Expression of predictive biomarkers was evaluated immunohistochemically using commer-

cially available antibodies and detection kits by automated staining techniques (Benchmark

XT, Ventana, Tucson, AZ): antibodies against androgen receptor (AR) [n = 18], topoisom-

erases 1 and 2 alpha (TOPO1, TOP2A) [n = 19], estrogen receptor (ER) [n = 18], progester-

one receptor (PR) [n = 18], MET proto-oncogene, receptor tyrosine kinase (c-MET)

[n = 13], human epidermal growth factor receptor 2 (HER2) [n = 19], tyrosine protein c-Kit

receptor kinase (c-Kit) [n = 6], epidermal growth factor receptor (EGFR) [n = 5], phospha-

tase and tensin homolog (PTEN) [n = 18], O(6)-methylguanine methyltransferase

(MGMT) [n = 19], P-glycoprotein (PGP) [n = 16], thymidylate synthase (TS) [n = 19],

transducin-like enhancer of split 3 (TLE3) [n = 12], ribonucleotide reductase M1 (RRM1)

[n = 15], serum protein acidic and rich in cysteine M (SPARC-M) [n = 13], tubulin beta-3

chain (TUBB3) [n = 14], anaplastic lymphoma kinase (ALK) [n = 4], breast cancer resis-

tance protein (BCRP) [n = 4], excision repair cross-complementation group 1 protein

(ERCC1) [n = 12], multidrug resistance associated protein 1 (MRP1) [n = 6], programmed

cell death-1 (PD-1) [n = 8], platelet-derived growth factor receptor (PDGFR) [n = 4], and

programmed death ligand-1 (PD-L1) [n = 10], tyrosine receptor kinase (pan-antiNTRK

[TrkA+B+C]) [n = 6]. Scoring system and cutoffs for all antibodies were used as described

in our previous studies [19,20] (S1 Table). All IHC assays were run along with both positive

and negative controls.

Copy number assays (fluorescence in situ hybridization [FISH] and

chromogenic in situ hybridization [CISH])

FISH was used for evaluation of the EGFR status (Vysis LSI EGFR SpectrumOrange/CEP7

Spectrum Green Probe, Abbott) [n = 5] while HER2 [n = 11] and c-MET [n = 9] genes were

evaluated using CISH (dual EGFR DNP/CEP 7 DIG probes; INFORM HER2 Dual ISH DNA

Probe Cocktail; commercially available c-MET and chromosome 7 DIG probe; Ventana, Tuc-

son, AZ) as previously described [19,21]. The tumors were considered amplified for HER2
when HER2/CEP17 ratio >2 [22]; EGFR was amplified when EGFR/CEP7 ratio >2 or>15

EGFR gene copies per cell were observed in >10% of analyzed cells [20]. cMET was amplified

if>5 cMET copies on average were observed [19].
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DNA sequencing (Next-generation [NGS] and Sanger sequencing)

NGS was performed on genomic DNA isolated from 15 FFPE samples using the Illumina

MiSeq platform (La Jolla, CA). The Illumina TruSeq Amplicon—Cancer Panel (TSACP) was

used for amplifying specific genomic regions. The NGS panel covering 46 genes were tested on

10 ONB cases while five cases were explored using the extended NGS panel that covers 592

genes (available here: http://www.carismolecularintelligence.com/solid_tumors_international)

[19,21].

For selected regions of v-Raf murine sarcoma viral oncogene homolog B (BRAF), V-Ki-ras2

Kirsten rat sarcoma viral oncogene homolog (KRAS), c-KIT, EGFR, and phosphatidylinositol

3-kinase catalytic subunit alpha (PIK3CA) genes Sanger sequencing was also used [19].

Gene fusions

Six recent ONB cases were tested for gene fusions using Archer FusionPlex Solid Tumor Kit

with Illumina MiSeq (Table 1, S2 Table, and online: http://www.carismolecularintelligence.

com/solid_tumors_international).

Whole genome RNA microarray

Whole-genome expression (RNA) was analyzed in four samples using Illumina cDNA-medi-

ated annealing, selection, extension and ligation (DASL) process with the HumanHT-12 v4

Table 1. Results of in situ hybridization, sequencing and gene fusion assays.

Case Age (sex) In situ hybridization Sequencing

#1 46 (M) EGFR negative TP53H214Y
#2 52 (F) HER2, cMET negative c-KIT G565V; TP53 T155_V157del
#3 71 (F) HER2, cMET negative APC SNP A1474T
#4 59 (F) HER2, cMET negative w.t.

#5 60 (M) HER2, cMET negative n/a

#6 53 (M) n/a w.t.

#7 63 (M) n/a TP53c673-1G>T
#8 51 (M) HER2, cMET negative CTNBB1 S33_H36del; [no gene fusion]

#9 52 (F) n/a w.t.

#10 68 (F) HER2, cMET negative w.t.

#11 43 (F) HER2, CMET negative SMAD4 N468fs
#12 73 (F) n/a cMET L1321I (VUS); PDGFRAV546L (VUS)
#13 29 (M) n/a n/a

#14 50 (F) EGFR negative n/a

#15 62 (M) HER2, cMET negative w.t.

#16 68 (F) EGFR negative n/a

#17 47 (M) n/a n/a

#18 84 (F) EGFR negative n/a

#19 47 (M) HER2 negative CTNNB1 S33P; [no gene fusion]

#20 65 (F) n/a w.t.; [no gene fusion]

#21 68 (F) n/a CDH1 D756Y (VUS), FH (K477dup); [no gene fusion]

#22 59 (F) EGFR negative EGFR Q276R (VUS); [no gene fusion]

#23 57 (M) n/a EGFR T572R (VUS); [gene fusion reaction failed]

VUS = Variant of unknown significance; w.t. = wild type; M = Male; F = Female; n/a = not available. EGFR:

Epidermal growth factor receptor; HER2: Human epidermal growth factor receptor 2; cMET: MET proto-oncogene,

receptor tyrosine kinase; APC: Adenomatous polyposis coli; TP53: Tumor suppressor p53.

https://doi.org/10.1371/journal.pone.0191244.t001
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beadChip (Illumina Inc., San Diego, CA) [21]. The RNA used for this analysis was extracted

from FFPE samples by the Qiagen kit. The control used in this study consisted of three nerve

RNAs from three healthy individuals pooled into a single sample. The over and under expres-

sion of transcripts in ONB samples were determined by taking the ratio of transcript in each

ONB over the control. Transcripts were identified as significant if all the four ONB samples

had consistently high or low ratio of expression when compared to control.

Results

Patients

The study included 23 patients (10 male and 13 female patients, age range: 29–84 years) with

recurrent or metastatic ONB, profiled at Caris CLIA-certified laboratory in the period 2012–

2017 (Table 1, S1–S3 Excel Files).

Molecular profiling using IHC, ISH, sequencing and gene fusions

The IHC, ISH, and sequencing results are summarized in Fig 1, Table 1 and S2 Excel File.

No cases expressed PD-L1 (0/10). Multiple protein biomarkers of response or resistance to

classic chemotherapy drugs were identified: PD-1 positive tumor infiltrating lymphocytes in

25% (2/8), low ERCC1 (cisplatin sensitivity [23] in 83% (10/12), high TOPO1 (irinotecan sen-

sitivity [24] in 63% [12/19], high TUBB3 (vincristine resistance [25] in 93% [13/14] (Fig 2F),

and high MRP1 (multidrug resistance) in 100% (6/6). Four out of six tested ONBs (67%) were

positive for pNTRK (Fig 2E).

Mutations (pathogenic and variants of unknown significance [VUS]) were detected in 10/

16 (63%) ONBs including tumor suppressor p53 (TP53) [3 cases], beta-catenin 1 gene

(CTNNB1), EGFR [2 cases, respectively], while single cases harbored Adenomatous Polyposis

Coli (APC), cKIT, cMET, Platelet Derived Growth Factor Receptor Alpha (PDGFRA),CDH1
(E-cadherin), Fumarate Hydratase (FH) and SMAD4 gene mutations (Table 1). CTNNB1 gene

alterations were further evaluated by the IHC (Fig 2C and 2D).

None of the cases harbored gene amplifications of EGFR, HER2 and cMET genes. Also,

gene fusions were not identified in any of the 6 successfully tested ONBs (the panel of fusion

genes is available in S2 Table).

Microarray results

When compared with the control tissue, 21 genes were consistently over-expressed and 19

genes consistently downregulated by an average of 10 fold. Some of the upregulated genes,

such as Secretogranin II (SCG2), stem cell marker cluster of differentiation 24 [CD24] (Fig

2A), and insulin-like growth factor binding protein 2 (IGFBP-2), and downregulated genes

(ATP-binding cassette transporter 8 [ABCA8] have been described to play a role in different

malignancies, and were not hitherto described in ONBs (Table 2). Among the downregulated

genes, GHR is a novel observation as most studies associate GHR over-expression as a risk fac-

tor for cancer. CD24 gene expression has been confirmed by the IHC (Fig 2B).

In order to better understand the pathways perturbed in ONB, we extended the list of over-

and under-expressed genes to those that were consistently over- and under-expressed by two

fold followed by functional classification of these genes using the Panther website (http://

pantherdb.org) and the Reactome database (see S3 Excel File for the list of genes). Overall, 183

genes were found to be downregulated and 146 were over-expressed. At the nominal p-value

of 0.05, fifty-nine Reactome pathways were shown to be enriched with the 183 downregulated

genes in ONB including 10 genes in the organization of extra cellular matrix and 4 genes in
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the cell junction organization. Pathway analysis of the 146 upregulated genes identified 100

enriched pathways including 13 genes in the Cell Cycle pathway, 10 genes in the TP53 path-

way, 8 genes in Chromatin Modifying Enzyme pathway (The list of all enriched pathways can

be found in S3 Excel File).

Discussion

Recent studies demonstrated potential therapeutic benefits of comprehensive molecular profil-

ing for the patients with advanced and/or metastatic cancers [16,26–28]. In this study, we

explored a wide range of potentially targetable biomarkers/pathways in recurrent or metastatic

ONB samples using multiple molecular profiling platforms, including IHC, ISH, expression

microarray and NGS. The sequencing results showed mutations in TP53 (n = 3/16), CTNNB1
(n = 2/16), EGFR (n = 2/16), APC, cKIT, cMET, PDGFRA,CDH1, FH, and SMAD4 genes

(n = 1/16, respectively). Multiple genes within the Wnt/β-catenin signaling pathway including

CTNNB1,APC and CDH1 exhibited mutations within this cohort. Loss-of-function mutations

in these genes lead to deregulated Wnt/β-catenin signaling and excessive stem cell renewal/

proliferation, and are associated with metastatic disease [29,30]. However, we found no target-

able Wnt pathway enrichment in our cohort using whole-genome expression assay. The

potential of several anti-cancer drugs has been explored by targeting different stages or compo-

nents of Wnt/β-catenin signaling pathway with limited success [31,32]. The role of cKIT and

PDGFRAmutations has been, most notably, investigated in gastrointestinal stromal tumors

(GIST), where these two mutations are mutually exclusive [33]. Imatinib (tyrosine-kinase

inhibitor) response in GIST patients depends not only on the protein expression, but also on

the type of mutation in KIT and PDGFRA genes [33,34]. One ONB case in our study had a

pathogenic cKIT mutation while another harbored VUS PDGFRAmutation. Both EGFR gene

mutations in our study were VUS while EGFR amplification was not observed in any of the

tested cases. These results indicate a limited therapeutic benefit of EGFR inhibitors in ONB

patients. Mutations in TP53 gene were also detected in other studies that performed DNA

sequence analysis in ONB samples [13–17]. Due to the disease progression in those patients, a

role of TP53 mutation as an unfavorable prognostic and predictive factor in ONB has been

suggested [18]. Of note, tumors harboring TP53 mutations may be sensitive to WEE kinase

inhibitors acting against G2-M checkpoint regulators of the cell cycle WEE1 and CHK1 [35].

In addition, our microarray analysis revealed up or downregulation of several genes previ-

ously implied in carcinogenesis but not previously described in ONBs, including CD24, SCG2,

Fig 1. Profiling results of 25 biomarkers using immunohistochemistry (IHC) and in situ hybridization (ISH). AR: androgen receptor; ER: estrogen

receptor; PR: progesterone receptor; ALK: anaplastic lymphoma kinase; HER2: Human epidermal growth factor receptor; EGFR: epidermal growth

factor receptor; c-Kit: tyrosine protein c-Kit receptor kinase; PDGFR: platelet-derived growth factor receptor; c-MET: MET proto-oncogene, receptor

tyrosine kinase; PTEN: phosphatase and tensin homolog; pan-NTRK: tyrosine receptor kinase; PD-1: programmed cell death-1; PD-L1: programmed

death ligand-1; ERCC1: excision repair cross-complementation group 1 protein; SPARC-M: Serum protein acidic and rich in cysteine M; RRM1:

ribonucleotide reductase M1; TLE3: transducin-like enhancer of split 3; TUBB3: tubulin beta-3 chain; TOPO1 and TOP2A: topoisomerases 1 and 2

alpha; TS: thymidylate synthase; MGMT: O(6)-methylguanine methyltransferase; BCRP: breast cancer resistance protein; MRP1: multidrug resistance

associated protein 1; PGP: P-glycoprotein.

https://doi.org/10.1371/journal.pone.0191244.g001
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Fig 2. (A): Hematoxylin and Eosin (H&E) figure of a case with upregulation of CD24 gene by microarray, confirmed by CD24

protein overexpression in the tumor cells (B); (C) A case of olfactory neuroblastoma (ONB) with CTNNB1mutation [S33_ H36del]

confirmed by the nuclear expression of β-catenin; Another case of ONB with CTNNB1mutation [S33P] with retained cytoplasmic/

membranous expression of β-catenin protein (D); A case of recurrent ONB with pNTRK overexpression (E) and overexpression of

TUBB3 (F).

https://doi.org/10.1371/journal.pone.0191244.g002

Table 2. Selected genes’ mRNA expression detected in olfactory neuroblastoma samples using Illumina array.

Gene Location Name/Function Relative expression ratio�

SCG2 2q36.1 Secretogranin II/chromogranin/secretogranin family of neuroendocrine secretory proteins 5.6–6.7

CD24 6q21 Modulates growth and differentiation of hematopoietic cells 5.5–7.3

IGFBP-2 2q35 Insulin-Like Growth Factor Binding Protein 2/promotes cell growth 3.9–7.7

ABCA8 17q24.2 Transports various molecules across extra- and intracellular membranes 0.18–0.26

GHR 5p13.1 Growth hormone receptor 0.28–0.29

� Compared with normal neural tissue.

Abbreviations: SCG2: Secretogranin II (member of neuroendocrine secretory proteins; the full-length protein is cleaved to produce the active peptide secretoneurin);

CD24 (hematopoietic and stem cell marker); IGFBP-2: Insulin-like growth factor binding protein 2 (an oncogene in most human epithelium cancers); ABCA8 (ATP-

binding cassette transporter 8; GHR: Growth hormone gene.

https://doi.org/10.1371/journal.pone.0191244.t002
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and IGFBP-2 among the upregulated genes, and ABCA8 and GHR among the downregulated

genes. In a recent study by Dvorak et al. a comprehensive expression analysis of all members

of the ABC transporter genes across multiple cancers showed that ABCA8 downregulation was

more observed in higher grade and its upregulation was associated with lower grade tumors

[36]. This is consistent with the data presented in our paper that ABCA8was consistently

downregulated in all four high-grade ONB samples. Interestingly, the study by Dvorak et al.

was able to show that out of all 49 ABC transporters that were investigated in various tumors,

ABCA8 and four others (ABCC7,ABCC8,ABCA3, and ABCA12) were among the most dysre-

gulated ABC genes [36]. ABCA8 has also been studied by others in relation to cancer and it has

been found to be downregulated in multidrug resistant ovarian cancer cell lines [37] as well as

in breast and prostate cancer [38,39]. In one study, ABCA8was found to be upregulated in a

subtype of medulloblastoma defined as Sonic hedgehog (SHH) and downregulated in the sub-

type defined as Wnt signaling [40]. It should be noted that the downregulation of GHR gene in

ONB was an unexpected result, as most studies in the literature associate GHR upregulation

with increased cancer risk [41].

More recently, immune checkpoint inhibitors (anti-PD-1/PD-L1) have revolutionized the

treatment of many tumors with most remarkable benefits in the patients with melanoma, non-

small cell lung carcinoma, renal cell carcinoma, bladder carcinoma, and classical Hodgkin

lymphoma [42]. Our study is the first to report on the lack of PD-L1 expression in ONB sam-

ples, which makes these patients less likely to respond to anti-PD-1/PD-L1 drugs.

Recently, Gay et al. comprehensively profiled 41 samples of ONBs identifying potential tar-

gets in the mTOR, CDK and growth factor signaling pathways [16]. Other, small studies on

molecular characteristics of ONB showed variable and largely inconsistent results. In the study

of Weiss et al. 119 somatically lost genes and 45 gained or amplified genes were reported in a

metastatic ONB sample using whole genome sequencing [13]. Seven somatic short nucleotide

variants (SNVs) were validated by Sanger sequencing. Specific mutations in KDR, MYC,

SIN3B, and NLRC4 genes were present only in the metastatic ONB sample, while mutations in

TP53, TAOK2 and MAP4K2 genes were present in both the metastatic and original surgical

resection specimens [13]. Our study confirmed some of these mutations (e.g. TP53) but failed

other mutations including MYC mutation. In contrast to other genetic alterations (copy num-

ber variations, chromosomal translocations, increased enhancer activity), MYC gene muta-

tions are uncommon [43], but have been described in some cancers (e.g. lymphomas) [44].

Furthermore, the described MYC mutation in ONB [13] has not been verified in the COSMIC

database (Catalog of Somatic Mutations in Cancer). Notably, none of our ONB cases harbored

MYCN gene amplification, a hallmark of pediatric neuroblastomas [45]. Further studies should

definitely elucidate the role of MYC gene(s) in ONBs.

Using two different genomics platforms, Cha et al. reported a TP53 missense mutation in a

metastatic ONB sample and a loss-of-function in CDKN2C gene [14]. Wang et al. detected

mutations in EGFR, FGFR2, KDR, and RET genes in a recurrent ONB sample, using WES. In

addition, EGFR and KDR genes were over-expressed in the tumor tissue [15].

Despite over-expression of the tropomyosin receptor kinase receptor family (NTRK)

observed in 4/6 tested ONB cases, we did not detect any fusion of either one of the three NTRK
genes (NTRK1, NTRK2, and NTRK3). Cancers with overexpression of NTRK driven by gene

fusions had been successfully treated with novel NTRK kinase inhibitors [46] but it remains

unclear if a “constitutive” overexpression such as this observed in ONB would offer any treat-

ment advantages. Interestingly, one of the cases with NTRK overexpression exhibited TUBB3

positivity and was CD24 positive (Fig 2) indicating a potential therapeutic benefit of retinoid-

based therapy [47].
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ALK (anaplastic lymphoma receptor tyrosine kinase) gene alterations have been reported in

various cancers including pediatric neuroblastomas [48]. We found no ALK gene alterations

(mutations or fusions) or over-expression of Alk protein in any of the tested ONB cases, so

these patients are unlikely to benefit from the ALK inhibitors.

In several studies, alternative approaches to ONB treatment, especially in metastatic or recur-

rent cases, have been explored. A combination of cetuximab (a monoclonal antibody to EGFR)

and sunitinib (small-molecule inhibitor of receptor tyrosine kinases [RTKs] including kinase

insert domain receptor [KDR], fibroblast growth factor receptor 2 [FGFR2], and RET RTK)

was selected as a treatment regimen in a case of recurrent ONB, after WES analysis. One month

after this treatment, a complete response was observed in the patient [15]. In another study, a

significant improvement of clinical symptoms and disease stabilization for 15 months were

observed after treatment with sunitinib in a patient with progressive ONB [49]. Furthermore,

imatinib mesylate was reported as a potential second-line treatment for inducing long-term

remission in heavily pretreated ONB patients [50]. Young et al. went a step further and explored

the efficacy of several combinations of targeted drugs in human ONB cell line TC268 [51]. The

combinations of AEW541 (insulin-like growth factor 1 [IGF-1] inhibitor) and FS114 (ribosomal

protein S6 kinase beta-1 [S6K1] inhibitor) or sunitinib and FS115 (S6K1 inhibitor) were the

most effective according to their results [51]. In addition, Sabongi et al. described a case with

multiple recurrences of ONB adjuvantly treated with the radiolabeled-somatostatin analogue,
177Lu-DOTA-TATE. After three cycles of 177Lu-DOTA-TATE treatment, the stabilization of

the disease was reported [52]. Finally, Mao et al. investigated the role of SHH signaling pathway

in the development of ONB, by treating ONB cell lines (TC-268 and JFEN) with cyclopamine, a

selective inhibitor of the SHH pathway [53]. After the cyclopamine treatment, inhibited ONB

cell proliferation and colony formation, induced ONB cell cycle arrest and apoptosis, downre-

gulated expression of SHH signaling components, i.e. PTCH1 and Gli1, and CCND1 (cyclin D1,

cycle-related regulator), as well as upregulated p21 expression were observed in vitro [53].

The efficacy of classic chemotherapy in ONBs remains unclear [2,4]. Chemotherapy alone,

or in combination with radiotherapy, is often limited to advanced and surgically inoperable

ONB cases [54]. Our IHC results indicate that several biomarkers may be used in tailoring the

classical cytotoxic drugs including cisplatin and irinotecan sensitivity and vincristine

resistance.

Our study have several limitations including a small sample size and lack of clinical (follow-

up) data. In addition, all samples were not tested with all methodologies as these have been

dynamically changing per molecular testing advances/improvements. This may result in insuf-

ficient and biased therapeutic implications.

Although our data indicate limited therapeutic options in patients with advanced and/or

metastatic ONBs, several potential biomarkers that could tailor both targeted (e.g., Wnt and

cKIT/PDGFRA) and classical therapeutic options merit further research. The therapeutic ben-

efits of immune checkpoint inhibitors are less likely due to the low or lack of PD-1/PD-L1

expression.
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